Lead-free Solder Joint Reliability – State of the Art and Perspectives
نویسندگان
چکیده
There is an increasing demand for replacing tin-lead (Sn/Pb) solders with lead-free solders in the electronics industry due to health and environmental concerns. The European Union recently passed a law to ban the use of lead in electronic products. The ban will go into effect in July of 2006. The Japanese electronics industry has worked to eliminate lead from consumer electronic products for several years. Although currently there are no specific regulations banning lead in electronics devices in the United States, many companies and consortiums are working on lead-free solder initiatives including Intel, Motorola, Agilent Technologies, General Electric, Boeing, NEMI and many others to avoid a commercial disadvantage. The solder joints reliability not only depends on the solder joint alloys, but also on the component and PCB metallizations. Reflow profile also has significant impact on lead-free solder joint performance because it influences wetting and microstructure of the solder joint. A majority of researchers use temperature cycling for accelerated reliability testing since the solder joint failure mainly comes from thermal stress due to CTE mismatch. A solder joint failure could be caused by crack initiation and growth or by macroscopic solder facture. There are conflicting views of the reliability comparison between leadfree solders and tin-lead solders. This paper first reviews lead-free solder alloys, lead-free component lead finishes, and lead-free PCB surface finishes. The issue of tin whiskers is also discussed. Next, lead-free solder joint testing methods are presented; finite element modeling of lead-free solder joint reliability is reviewed; and experimental data comparing lead-free and tin-lead solder joint reliability are summarized. Finally the paper gives perspectives of transitions to totally lead-free manufacturing.
منابع مشابه
Investigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملInvestigation of microstructure and physical properties in nanocomposite solder reinforced with various percent of graphene nanosheets (SAC0307+GNSs)
Development of electronic industries, compression of electronic equipment, and removing lead from electronic circuits for environmental issues, resulted in a significant challenge in design and development of tin-based lead-free solders with physical and mechanical properties similar to old tin-lead alloys. In this regard, the set of Sn-Ag-Cu alloys with eutectic and near eutectic compositions ...
متن کاملConstitutive Property Testing and Reliability Assessment of Lead - Free Solder Joint
Title of Document: CONSTITUTIVE PROPERTY TESTING AND RELIABILITY ASSESSMENT OF LEADFREE SOLDER JOINT Yuri Lee, Master, 2010 Directed By: Professor Bongtae Han, Department of Mechanical Engineering A modified single lap shear test configuration, based on the Iosipescu geometry, is proposed to characterize mechanical properties of solder alloys. In the method, an auxiliary device (extension unit)...
متن کاملHigh Reliability Lead-free Solder SN100C(Sn-0.7Cu-0.05Ni+Ge)
While the situation varies from country to country, nearly one year after the EU RoHS Directive came into force implementation of lead-free solder is progressing steadily. For lead-free soldering to be considered successful it is not sufficient just to have dealt with the challenges of mass production. It is also necessary to establish that the soldered joints produced are at least as reliable ...
متن کاملMechanical Properties and Solder Joint Reliability of Low-Melting Sn-Bi-Cu Lead Free Solder Alloy
The influence of alloy composition of lowmelting Sn-Bi-Cu lead-free solder alloys on mechanical properties and solder joint reliabilities were investigated. The mechanically optimum alloy composition is Sn-40Bi-0.1Cu (mass%). The addition of 40mass%Bi improves the ductility and restrains the fillet-lifting, which are problems of lead-free solders with Bi. The addition of copper improves both th...
متن کامل